Модифікація кишкової мікробіоти і фекальна трансплантація як перспективні методи лікування ожиріння, інсулінорезистентності і цукрового діабету 2 типу

Автор(и)

  • О. С. Ларін Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine https://orcid.org/0000-0002-5090-5110
  • С. М. Ткач Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine
  • О. С. Тимошенко Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine
  • Ю. Г. Кузенко Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine

DOI:

https://doi.org/10.24026/1818-1384.2(54).2016.75861

Ключові слова:

ожиріння, інсулінорезистентність, цукровий діабет 2 типу, фекальна трансплантація

Анотація

Поширеність ожиріння та цукрового діабету 2 типу у світі невпинно зростає. Останні дослідження породили принципово нову перспективу відносно того, що кишечна мікробіота може відігравати значну роль у розвитку цих метаболічних порушень. Зміни в складі кишечної мікробіоти сприяють системному запаленню, що є характерною ознакою ожиріння та інсулінорезистентності. Таким чином, важливо розуміти реципрокні взаємовідносини між складом кишечної мікробіоти та «метаболічним» здоров’ям з тим, щоб запобігти розвитку хвороби. Дослідження щодо фекальної трансплантації дозволили виявити ключову роль у цьому процесі бутират-продукуючих кишечних бактерій, здатних регулювати різні сигнальні каскади, що асоціюються з ожирінням, інсулінорезистентністю та цукровим діабетом 2 типу. 

Біографії авторів

О. С. Ларін, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Ларін Олександр Сергійович, д-р мед. наук, проф., директор УНПЦЕХ, ТЕОіТ МОЗ України

С. М. Ткач, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Ткач Сергій Михайлович, д-р мед. наук, проф., відділ профілактики та лікування цукрового діабету

О. С. Тимошенко, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

А. Timoshenko

Ю. Г. Кузенко, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Y. Kuzenko

Посилання

Amar J., Serino M., Lange C. et al. DESIR Study Group. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011; 54:3055–61. https://doi.org/10.1007/s00125-011-2329-8

Backhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101:15718–23. https://doi.org/10.1073/pnas.0407076101

Blustein J., Attina T., Liu M. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes (Lond) 2013; 37:900–6. https://doi.org/10.1038/ijo.2013.49

Caesar R., Reigstad C.S., Bäckhed H.K. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 2012; 61:1701–7. https://doi.org/10.1136/gutjnl-2011-301689

Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761–72. http://dx.doi.org/10.2337/db06-1491

David L.A., Maurice C.F., Carmody R.N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2013; 505:559–63. https://doi.org/10.1038/nature12820

Davie J.R. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133 (Suppl. 7):2485S–93S.

de Vos W.M., Nieuwdorp M. Genomics: a gut prediction. Nature 2013; 498:48–9. https://doi.org/10.1038/nature12251

DiBaise J.K., Zhang H., Crowell M.D., Krajmalnik-Brown R., Decker G.A., Rittmann B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 2008; 83:460–9. https://doi.org/10.4065/83.4.460

Dominguez-Bello M.G., Costello E.K., Contreras M. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971–5. https://doi.org/10.1073/pnas.1002601107

Donohoe D.R., Garge N., Zhang X. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13:517–26. https://doi.org/10.1016/j.cmet.2011.02.018

Dougherty R.M., Galli C., Ferro-Luzzi A., Iacono J.M. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 1987; 45:443–55.

Duncan S.H., Lobley G.E., Holtrop G. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008; 32:1720–4. https://doi.org/10.1038/ijo.2008.155

Gao Z., Yin J., Zhang J. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58: 1509–17. https://doi.org/10.2337/db08-1637

Ghoshal S., Witta J., Zhong J., de Villiers W., Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 2009; 50:90–7. https://doi.org/10.1194/jlr.m800156-jlr200

Hossain P., Kawar B., El Nahas M. Obesity and diabetes in the developing world – a growing challenge. N Engl J Med 2007; 356:213–5. https://doi.org/10.1056/nejmp068177

Jiménez E., Marín M.L., Martín R. et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008; 159:187–93. https://doi.org/10.1016/j.resmic.2007.12.007

Johnson M.T., Stinchcombe J.R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 2007; 22:250–7. https://doi.org/10.1016/j.tree.2007.01.014

Karlsson F.H., Tremaroli V., Nookaew I. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498:99–103. https://doi.org/10.1038/nature12198

Le Chatelier E., Nielsen T., Qin J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541–6. https://doi.org/10.1038/nature12506

Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1022–3. https://doi.org/10.1038/4441022a

Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489:220–30. https://doi.org/10.1038/nature11550

Madsen D., Beaver M., Chang L., Bruckner-Kardoss E.,Wostmann B. Analysis of bile acids in conventional and germfree rats. J Lipid Res 1976; 17:107–11.

Maslowski K.M., Vieira A.T., Ng A. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461:1282–6. https://doi.org/10.1038/nature08530

Miyata M., Takamatsu Y., Kuribayashi H., Yamazoe Y. Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression. J Pharmacol Exp Ther 2009; 331:1079–85. https://doi.org/10.1124/jpet.109.160093

Newburg D.S. Neonatal protection by innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci 2009; 39:26–34. https://doi.org/10.2527/jas.2008-1347

Olle B. Medicines from microbiota. Nat Biotechnol 2013; 31: 309–15 https://doi.org/10.1038/nbt.2548

Osborn O., Olefsky J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 2012; 18:363–74. https://doi.org/10.1038/nm.2627

Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., Brown P.O. Development of the human infant intestinal microbiota. PLOS Biol 2007; 39:e177. https://doi.org/10.1371/journal.pbio.0050177

Prawitt J, Abdelkarim M, Stroeve JH et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 2011; 60:1861–71. http://dx.doi.org/10.2337/db11-0030

Qin J, Li Y, Cai Z et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55–60. https://doi.org/10.1038/nature11450

Rautava S., Walker W.A. Commensal bacteria and epithelial cross talk in the developing intestine. Curr Gastroenterol Rep 2007; 9:385–92. https://doi.org/10.1007/s11894-007-0047-7

Ridaura V.K., Faith J.J., Rey F.E. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341:1241214. https://doi.org/10.1126/science.1241214

Samuel B.S., Shaito A.,Motoike T. et al. Effects of the gut microbiota on host adiposity are modulated by the short chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105:16767–72. https://doi.org/10.1073/pnas.0808567105

Schwiertz A., Taras D., Schäfer K. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18:190–5. https://doi.org/10.1038/oby.2009.167

Smits L.P., Bouter K.E., de Vos W.M., Borody T.J., Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013; 145:946–53. https://doi.org/10.1053/j.gastro.2013.08.058

Song S.J., Lauber C., Costello E.K. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2013; 2:e00458. https://doi.org/10.7554/elife.00458

Sudo N., Sawamura S., Tanaka K., Aiba Y., Kubo C., Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159:1739–45.

Tazoe H., Otomo Y., Kaji I., Tanaka R., Karaki S.I., Kuwahara A. Roles of short chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008; 59 (Suppl. 2):251–62.

Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7:678–93. https://doi.org/10.1038/nrd2619

Thomas C., Gioiello A., Noriega L. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10:167–77. https://doi.org/10.1016/j.cmet.2009.08.001

Tilg H., Moschen A.R., Kaser A. Obesity and the microbiota. Gastroenterology 2009; 136:1476–83. https://doi.org/10.1053/j.gastro.2009.03.030

Trasande L., Blustein J., Liu M., Corwin E., Cox L.M., Blaser M.J. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 2013; 37:16–23. https://doi.org/10.1038/ijo.2012.132

Turnbaugh P.J., Ley R.E., Mahowald M.A. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444:1027–31. https://doi.org/10.1038/nature05414

Turnbaugh P.J., Hamady M., Yatsunenko T. et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480–4. https://doi.org/10.1038/nature07540

Udayappan S., Hartstra A., Dallinga-Thie G., Nieuwdorp M. Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clinical and Experimental Immunology 2014; 177: 24–29 https://doi.org/10.1111/cei.12293

Vrieze A., Out C., Fuentes S. et al. Vancomycin decreases insulin sensitivity and is associated with alterations in intestinal microbiota and bile acid composition in obese subjects with metabolic syndrome. J Hepatol 2013; 60:824–31. P. ii: S0168-8278 (13)00837-4. http://dx.doi.org/10.1016/j.jhep.2013.11.034

Vrieze A., Van Nood E., Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in subjects with metabolic syndrome. Gastroenterology 2012; 143:913–6. http://dx.doi.org/10.1053/j.gastro.2012.06.031 (20 June 2012).

Weingarden A.R., Chen C., Bobr A. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 2013; 306:G310–9. https://doi.org/10.1152/ajpgi.00282.2013

Wostmann B.S. Intestinal bile acids and cholesterol absorption in the germfree rat. J Nutr 1973; 103:982–90.

Wu G.D., Chen J., Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334:105–8. https://doi.org/10.1126/science.1208344

##submission.downloads##

Опубліковано

2016-06-22

Номер

Розділ

Оригінальні дослідження