Роль кишкової мікробіоти у розвитку ожиріння та інсулінорезистентності

Автор(и)

  • С. М. Ткач Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine
  • О. С. Тимошенко Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine
  • Г. А. Дорофєєва Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine

DOI:

https://doi.org/10.24026/1818-1384.1(53).2016.75590

Ключові слова:

кишкова мікробіота, ожиріння, інсулінорезистентність

Анотація

В огляді описано взаємозв’язок між дисбалансом кишкової мікробіоти та розвитком ожиріння, інсулінорезистентності (ІР). Показані метаболічні, імуногенні ефекти кишкової мікробіоти на організм в цілому, особливості її складу та поділ на «ентеротипи», патогенетичні механізми впливу на хронічне системне запалення, що супроводжує ожиріння та ІР. Представлені види модифікації кишкової мікробіоти як один з методів профілактики та лікування багатьох захворювань, в тому числі ожиріння та ІР.

Біографії авторів

С. М. Ткач, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Ткач Сергій Михайлович, д-р мед. наук, проф., відділ профілактики та лікування цукрового діабету

О. С. Тимошенко, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

O. Tymoshenko

Г. А. Дорофєєва, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

А. Dorofeyeva

Посилання

Amar J., Burcelin R., Ruidavets J.B., et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008;87:1219–1223. http://dx.doi.org/10.3945/(issn)1938-3207

Amar J., Serino M., Lange C., et al; D.E.S.I.R. Study Group. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011; 54:3055–3061. http://dx.doi.org/10.1007/s00125-011-2329-8

Aroniadis O.C., Brandt L.J. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol. 2013;29:79–84. http://dx.doi.org/10.1097/mog.0b013e32835a4b3e

Backhed F., et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101:15718–15723. http://dx.doi.org/10.1073/pnas.0407076101

Backhed F., et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007;104:979–984. http://dx.doi.org/10.1073/pnas.0605374104

Balamurugan R., George G., Kabeerdoss J., Hepsiba J., Chandragunasekaran A.M., Ramakrishna B.S. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. BrJNutr 2010;103:335–38. http://dx.doi.org/10.1017/s0007114509992182

Borody T.J., Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 2012;9:88–96. http://dx.doi.org/10.1038/nrgastro.2011.244

Borody T.J., Campbell J. Fecal microbiota transplantation: current status and future directions. Exp Rev Gastroenterol Hepatol 2011; 5:653–655. http://dx.doi.org/10.1586/egh.11.71

Brandt L.J. American Journal of Gastroenterology lecture: intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection. Am J Gastroenterol 2013; 108:177–185. http://dx.doi.org/10.1038/ajg.2012.450

Cani P.D., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–1772. http://dx.doi.org/10.2337/db06-1491

Cani P.D., Delzenne N.M. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care 2007;10:729–734. http://dx.doi.org/10.1097/mco.0b013e3282efdebb

Cani P.D., Delzenne N.M. The role of the gut microbiota in energy metabolism and metabolic disease. CurrPharmDes 2009;15:1546–58. http://dx.doi.org/10.2174/138161209788168164

Cani P.D., Osto M., Geurts L., Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut microbes 2012 Jul 1;3. http://dx.doi.org/10.4161/gmic.19625

Cani P.D. Metabolism in 2013: The gut microbiota manages host metabolism. Nature reviews Endocrinology 2014 Feb;10:74–6. http://dx.doi.org/10.1038/nrendo.2013.240

Cani P.D., Everard A., Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Current opinion in pharmacology 2013 Dec;13:935–40. http://dx.doi.org/10.1016/j.coph.2013.09.008

Delzenne N.M., Neyrinck A.M., Backhed F., Cani P.D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature reviews Endocrinology 2011;7:639–46. http://dx.doi.org/10.1038/nrendo.2011.126

Delzenne N.M., Neyrinck A.M., Cani P.D. Gut microbiota and metabolic disorders: How prebiotic can work? The British journal of nutrition 2013 Jan;109 Suppl 2:S81–5. http://dx.doi.org/10.1017/s0007114512004047

De Filippo C., Cavalieri D., Di Paola M., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa – PNAS, Erly Edition, 2010, on line. http://dx.doi.org/10.1073/pnas.1005963107

Di Baise J.K., Zhang H., Crowell M.D., et al. Gut Microbiota and Its Possible Relationship With Obesity. Proc. 2008; 83 (4): 460–469. http://dx.doi.org/10.4065/83.4.460

de Vos W.M., de Vos E.A. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 2012;70(suppl 1):S45–S56. http://dx.doi.org/10.1111/j.1753-4887.2012.00505.x

Eckel R.H., et al. The metabolic syndrome. Lancet 2010; 375:181–183. http://dx.doi.org/10.1016/s0140-6736(09)61794-3

El-Matary W., Simpson R., Ricketts-Burns N. Fecal microbiota transplantation: are we opening a can of worms? Gastroenterology 2012; 143:e19–e20. http://dx.doi.org/10.1053/j.gastro.2012.04.055

Everard A., Cani P.D. Diabetes, obesity and gut microbiota. Best practice & research Clinical gastroenterology 2013 Feb;27:73–83. http://dx.doi.org/10.1016/j.bpg.2013.03.007

Everard A., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110: 9066–9071. http://dx.doi.org/10.1073/pnas.1219451110

Fabbrini E., Tamboli R.A., et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 2010;139. 448–445. http://dx.doi.org/10.1053/j.gastro.2010.04.056

Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in Obesity. Annu. Rev. Immunol. 2011; 29: 415–445. http://dx.doi.org/10.1146/annurev-immunol-031210-101322

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–214. http://dx.doi.org/10.1038/nature11234

Kadooka Y., Sato M., Imaizumi K., et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in randomized controlled trial. Eur. J. Clin. Nutr. 2010; 64: 636–643. http://dx.doi.org/10.1038/ejcn.2010.19

Kahn B.B., Alquier T., Carling D., et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1: 15–25. http://dx.doi.org/10.1016/j.cmet.2004.12.003

Karlsson F.H., et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99–103. http://dx.doi.org/10.1038/nature12198

Kootte R.S., Vrieze A., Holleman F., et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 2012;14:112–120. http://dx.doi.org/10.1111/j.1463-1326.2011.01483.x

Koliwad S.K., Kuo T., Shipp L.E., et al. Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem 2009; 284:25593–25601. http://dx.doi.org/10.1074/jbc.m109.025452

Kondo S., Xiao J., Saton T., et al. Antiobesity effects of Bifidobacterium breve Strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci. Biotechnol.Biochem. 2010; 74: 1656–1661. http://dx.doi.org/10.1271/bbb.100267

Lee H.Y., Park J.H., Seok S.H., et al. Human originated bacteria Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta. 2006; 1761 (7): 736–744. http://dx.doi.org/10.1016/j.bbalip.2006.05.007

Ley R.E., et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005;102:11070–11075. http://dx.doi.org/10.1073/pnas.0504978102

Ley R.E., et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023. http://dx.doi.org/10.1038/4441022a

Macfarlane G.T., Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95:50–60. http://dx.doi.org/10.5740/jaoacint.sge_macfarlane

Moreno-Navarrete J.M., et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesityrelated insulin resistance. Int J Obes (Lond) 2012;36: 1442–1449. http://dx.doi.org/10.1038/ijo.2011.256

Nieuwdorp M., Gilijamse Pim W., Pai Nikhil, Kaplan Lee M. Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology 2014;146:1525–1533. http://dx.doi.org/10.1053/j.gastro.2014.02.008

Qin J., Li R., Raes J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464 (4): 59–67. http://dx.doi.org/10.1038/nature08821

Qin J., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60. http://dx.doi.org/10.1038/nature11450

Petschow B., Dore J., Hibberd P., Dinan T., Reid G., Blaser M., et al. Probiotics, prebiotics, and the host microbiome: the science of translation. Annals of the New York Academy of Sciences 2013;22:12303. http://dx.doi.org/10.1111/nyas.12303

Portugal L., Goncalves J., Fernandes L., et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz. J. Med. Biol. Res. 2006; 39: 629–635. http://dx.doi.org/10.1590/s0100-879x2006000500010

Schwiertz A., et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18:190–195. http://dx.doi.org/10.1038/oby.2009.167

Swinburn B.A., et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011; 378:804–814. http://dx.doi.org/10.1016/s0140-6736(11)60813-1

Tazoe H., et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008;59(suppl 2):251–262. Tilg H. Obesity, metabolic syndrome, and microbiota: multiple interactions. J Clin Gastroenterol 2010;44 (suppl 1): S16–S18. http://dx.doi.org/10.1097/mcg.0b013e3181dd8b64

Turnbaugh P.J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–1031. http://dx.doi.org/10.1038/nature05414

Vrieze A., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143: 913–916-7. http://dx.doi.org/10.1053/j.gastro.2012.06.031

Wu G.D., Chen J., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334: 105–108. http://dx.doi.org/10.1126/science.1208344

##submission.downloads##

Опубліковано

2016-03-12

Номер

Розділ

Огляди літератури