Діабет-індукований остеопороз. Огляд

Автор(и)

  • В. Є. Кондратюк Національний медичний університет імені О. О. Богомольця, Київ, Україна http://orcid.org/0000-0002-4891-2338
  • А. П. Стахова Національний медичний університет імені О. О. Богомольця, Київ, Україна http://orcid.org/0000-0002-1514-7377

DOI:

https://doi.org/10.30978/CEES-2024-1-65

Ключові слова:

вторинний остеопороз, гіперглікемія, діабет‑індукований остеопороз, імунопороз, цукровий діабет

Анотація

В огляді літератури висвітлено вплив остеопорозу на стан здоров’я населення. Основну увагу приділено одному із видів вторинного остеопорозу — діабет‑індукованому остеопорозі. Наведено механізми втрати кісткової маси, описано взаємодію між остеобластами та остеокластами, роль імунних клітин у процесі остеопорозу за умов гіперглікемії. Визначено чинники ризику діабет‑індукованого остеопорозу при цукровому діабеті 1 та 2 типу й причини зменшення мінеральної щільності кісток.

Висока частота переломів у пацієнтів із цукровим діабетом спричинена як негативним впливом гіперглікемії на архітектоніку кістки, так і дією гіпоглікемії, що підвищує ризик падінь. Поряд з гіперглікемічно‑опосередкованими процесами в кістці в патогенезі діабет‑індукованого остеопорозу важливе значення має стан мікроциркуляторного русла, м’язової тканини та периферичної нервової системи. Поглиблене вивчення імунопорозу сприятиме створенню нових і розвитку наявних підходів до таргетного лікування остеопорозу. За даними літератури, у хворих на цукровий діабет 1 типу частота будь‑яких переломів підвищується втричі. Виявлено зв’язок гіперглікемії, інсуліну, інсуліноподібного фактора росту, анаболічних гормонів і С‑пептиду з розвитком діабет‑індукованого остеопорозу. Попри нижчу частоту переломів у хворих на цукровий діабет 2 типу порівняно з цукровим діабетом 1 типу, основними причинами переломів є високий ризик падінь, накопичення кінцевих продуктів глікозилювання, що прогресує, низький рівень метаболізму кісткової тканини, а також ожиріння та інсулінорезистентність. Схарактеризовано вплив гіпоглікемічних препаратів на ризик переломів і мінеральну щільність кісткової тканини. Метформін і агоністи рецепторів глюкагоноподібного пептиду‑1 мають найсприятливіший профіль безпечності щодо переломів у хворих на ЦД за наявності вторинного остеопорозу.  У хворих на цукровий діабет найефективнішими антиостеопоротичними препаратами є бісфосфонати, андрогени та інгібітор ліганд‑рецептора активатора ядерного фактора kB (RANKL).

Біографії авторів

В. Є. Кондратюк, Національний медичний університет імені О. О. Богомольця, Київ

д. мед. н., проф., зав. кафедри пропедевтики внутрішньої медицини №2

А. П. Стахова, Національний медичний університет імені О. О. Богомольця, Київ

доктор філософії (PhD), асистент кафедри пропедевтики внутрішньої медицини №2

Посилання

Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther. 2019;19(9):937-48. http://doi.org/10.1080/14712598.2019.1618266.

Zhang W, Gao R, Rong X, et al. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne). 2022;13:965258. Published 2022 Sep 6. http://doi.org/10.3389/fendo.2022.965258.

Hudec SM, Camacho PM. Secondary causes of osteoporosis. Endocr Pract. 2013;19(1):120-8. http://doi.org/10.4158/EP12059.RA.

Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev. 2022;43(2):240-313. http://doi.org/10.1210/endrev/bnab028.

Lespessailles E, Chapurlat R. High fracture risk patients with glucocorticoid-induced osteoporosis should get an anabolic treatment first. Osteoporos Int. 2020;31(10):1829-34. http://doi.org/10.1007/s00198-020-05568-w.

Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2019;104(5):1595-622. http://doi.org/10.1210/jc.2019-00221.

Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women [published correction appears in Osteoporos Int. 2020 Jan;31(1):209] [published correction appears in Osteoporos Int. 2020 Apr;31(4):801]. Osteoporos Int. 2019;30(1):3-44. http://doi.org/10.1007/s00198-018-4704-5.

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276-87. http://doi.org/10.1016/S0140-6736(10)62349-5.

Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol. 2018;9:657. Published 2018 Apr 5. http://doi.org/10.3389/fimmu.2018.00657.

Srivastava RK, Sapra L. The Rising Era of «Immunoporosis»: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res. 2022;15:1667-98. Published 2022 Mar 5. http://doi.org/10.2147/JIR.S351918.

Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 2007;18(4):427-44. http://doi.org/10.1007/s00198-006-0253-4.

Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32(9):1134-42. http://doi.org/10.1111/dme.12734.

Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495-505. http://doi.org/10.1093/aje/kwm106.

Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women [published correction appears in Osteoporos Int. 2006;17(11):1704]. Osteoporos Int. 2006;17(7):1065-77. http://doi.org/10.1007/s00198-006-0137-7.

Williamson S, Landeiro F, McConnell T, et al. Costs of fragility hip fractures globally: a systematic review and meta-regression analysis. Osteoporos Int. 2017;28(10):2791-800. http://doi.org/10.1007/s00198-017-4153-6.

Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60(7):1163-9. http://doi.org/10.1007/s00125-017-4269-4.

Dominguez LJ, Muratore M, Quarta E, Zagone G, Barbagallo M. Osteoporosi e diabete mellito [Osteoporosis and diabetes]. Reumatismo. 2004;56(4):235-41. http://doi.org/10.4081/reumatismo.2004.235.

de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16(12):1713-20. http://doi.org/10.1007/s00198-005-1909-1.

Leslie WD, Morin SN, Lix LM, Majumdar SR. Does diabetes modify the effect of FRAX risk factors for predicting major osteoporotic and hip fracture? Osteoporos Int. 2014;25(12):2817-24. http://doi.org/10.1007/s00198-014-2822-2.

Ivers RQ, Cumming RG, Mitchell P, Peduto AJ; Blue Mountains Eye Study. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care. 2001;24(7):1198-203. http://doi.org/10.2337/diacare.24.7.1198.

Majumdar SR, Leslie WD, Lix LM, et al. Longer Duration of Diabetes Strongly Impacts Fracture Risk Assessment: The Manitoba BMD Cohort. J Clin Endocrinol Metab. 2016;101(11):4489-96. http://doi.org/10.1210/jc.2016-2569.

Schneider AL, Williams EK, Brancati FL, Blecker S, Coresh J, Selvin E. Diabetes and risk of fracture-related hospitalization: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2013;36(5):1153-8. http://doi.org/10.2337/dc12-1168.

Li CI, Liu CS, Lin WY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study. J Bone Miner Res. 2015;30(7):1338-46. http://doi.org/10.1002/jbmr.2462.

Schwartz AV, Margolis KL, Sellmeyer DE, et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care. 2012;35(7):1525-31. http://doi.org/10.2337/dc11-2184.

Thong EP, Herath M, Weber DR, et al. Fracture risk in young and middle-aged adults with type 1 diabetes mellitus: A systematic review and meta-analysis. Clin Endocrinol (Oxf). 2018;89(3):314-23. http://doi.org/10.1111/cen.13761.

Stumpf U, Hadji P, van den Boom L, Böcker W, Kostev K. Incidence of fractures in patients with type 1 diabetes mellitus-a retrospective study with 4420 patients. Osteoporos Int. 2020;31(7):1315-22. http://doi.org/10.1007/s00198-020-05344-w.

Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care. 2015;38(10):1913-20. http://doi.org/10.2337/dc15-0783.

Jensen MH, Vestergaard P. Hypoglycaemia and type 1 diabetes are associated with an increased risk of fractures. Osteoporos Int. 2019;30(8):1663-70. http://doi.org/10.1007/s00198-019-05014-6.

Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Curr Osteoporos Rep. 2016;14(6):320-6. http://doi.org/10.1007/s11914-016-0332-1.

Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters [published correction appears in Kidney Int. 2017 Dec;92(6):1558]. Kidney Int. 2017;92(1):26-36. http://doi.org/10.1016/j.kint.2017.04.006.

Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M. Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect. 2019;8(3):R55-R70. http://doi.org/10.1530/EC-18-0456.

Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover — a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137-R157. http://doi.org/10.1530/EJE-16-0652.

Kalaitzoglou E, Popescu I, Bunn RC, Fowlkes JL, Thrailkill KM. Effects of type 1 diabetes on osteoblasts, osteocytes, and osteoclasts. Curr Osteoporos Rep. 2016;14(6):310-9. http://doi.org/10.1007/s11914-016-0329-9.

Pujia A, Gazzaruso C, Montalcini T. An update on the potential role of C-peptide in diabetes and osteoporosis. Endocrine. 2017;58(3):408-12. http://doi.org/10.1007/s12020-017-1286-5.

Wu EL, Cheng M, Zhang XJ, Wu TG, Zhang L. The role of non-coding RNAs in diabetes-induced osteoporosis. Differentiation. 2023;133:98-108. http://doi.org/10.1016/j.diff.2023.08.002.

Thong EP, Wong P, Dev A, Ebeling PR, Teede HJ, Milat F. Increased prevalence of fracture and hypoglycaemia in young adults with concomitant type 1 diabetes mellitus and coeliac disease. Clin Endocrinol (Oxf). 2018;88(1):37-43. http://doi.org/10.1111/cen.13488.

Braham R, Robert AA, Musallam MA, Alanazi A, Swedan NB, Al Dawish MA. Reproductive disturbances among Saudi adolescent girls and young women with type 1 diabetes mellitus. World J Diabetes. 2017;8(11):475-83. http://doi.org/10.4239/wjd.v8.i11.475.

Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:455-68. Published 2017 Apr 11. http://doi.org/10.2147/TCRM.S131945.

Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res. 2017;29(2):301-9. http://doi.org/10.1007/s40520-016-0562-1.

Fan Y, Wei F, Lang Y, Liu Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2016;27(1):219-28. http://doi.org/10.1007/s00198-015-3279-7.

Wang J, You W, Jing Z, Wang R, Fu Z, Wang Y. Increased risk of vertebral fracture in patients with diabetes: a meta-analysis of cohort studies. Int Orthop. 2016;40(6):1299-307. http://doi.org/10.1007/s00264-016-3146-y.

Wang H, Ba Y, Xing Q, Du JL. Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open. 2019;9(1):e024067. Published 2019 Jan 3. http://doi.org/10.1136/bmjopen-2018-024067.

Martinez-Huedo MA, Jiménez-García R, Mora-Zamorano E, Hernández-Barrera V, Villanueva-Martinez M, Lopez-de-Andres A. Trends in incidence of proximal humerus fractures, surgical procedures and outcomes among elderly hospitalized patients with and without type 2 diabetes in Spain (2001-2013). BMC Musculoskelet Disord. 2017;18(1):522. Published 2017 Dec 11. http://doi.org/10.1186/s12891-017-1892-7.

Koromani F, Oei L, Shevroja E, et al. Vertebral fractures in indi-viduals with type 2 diabetes: more than skeletal complications alone. Diabetes Care. 2020; 43(1):137-44. http://doi.org/10.2337/dc19-0925.

Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care. 2013;36(6):1619-28. http://doi.org/10.2337/dc12-1188.

Herrera-Rangel AB, Aranda-Moreno C, Mantilla-Ochoa T, Zainos-Saucedo L, Jáuregui-Renaud K. Influence of the body mass index on the occurrence of falls in patients with type 2 diabetes mellitus. Obes Res Clin Pract. 2015;9(5):522-6. http://doi.org/10.1016/j.orcp.2015.02.006.

Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T. Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(4):1277-84. http://doi.org/10.1210/jc.2011-2537.

Holloway WR, Collier FM, Aitken CJ, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200-9. http://doi.org/10.1359/jbmr.2002.17.2.200.

Sorocéanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol. 2004;183(1):203-16. http://doi.org/10.1677/joe.1.05723.

Watanabe S, Takeuchi Y, Fukumoto S, Fujita H, Nakano T, Fujita T. Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab. 2003;21(3):166-71. http://doi.org/10.1007/s007740300026.

Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014;43(1):205-32. http://doi.org/10.1016/j.ecl.2013.09.010.

Chan BK, Marshall LM, Winters KM, Faulkner KA, Schwartz AV, Orwoll ES. Incident fall risk and physical activity and physical performance among older men: the Osteoporotic Fractures in Men Study. Am J Epidemiol. 2007;165(6):696-703. http://doi.org/10.1093/aje/kwk050.

Verschueren S, Gielen E, O’Neill TW, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24(1):87-98. http://doi.org/10.1007/s00198-012-2057-z.

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23. http://doi.org/10.1093/ageing/afq034.

Sayer AA, Dennison EM, Syddall HE, Gilbody HJ, Phillips DI, Cooper C. Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg?. Diabetes Care. 2005;28(10):2541-2. http://doi.org/10.2337/diacare.28.10.2541.

Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184-92. http://doi.org/10.1001/jama.2011.715.

Hunt HB, Torres AM, Palomino PM, et al. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res. 2019;34(7):1191-206. http://doi.org/10.1002/jbmr.3711.

Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D. Comparison of Methods for Improving Fracture Risk Assessment in Diabetes: The Manitoba BMD Registry. J Bone Miner Res. 2018;33(11):1923-1930. http://doi.org/10.1002/jbmr.3538.

Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(9):3240-50. http://doi.org/10.1210/jc.2012-1546.

Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(11):5045-55. http://doi.org/10.1210/jc.2010-0226.

Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313-24. http://doi.org/10.1002/jbmr.1763.

Nilsson AG, Sundh D, Johansson L, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;32(5):1062-71. http://doi.org/10.1002/jbmr.3057.

Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787-95. http://doi.org/10.1002/jbmr.2106.

Petit MA, Paudel ML, Taylor BC, et al. Bone mass and strength in older men with type 2 diabetes: the osteoporotic fractures in men study. J Bone Miner Res. 2010;25(2):285-91. http://doi.org/10.1359/jbmr.090725.

Ho-Pham LT, Nguyen TV. Association between trabecular bone score and type 2 diabetes: a quantitative update of evidence. Osteoporos Int. 2019;30(10):2079-85. http://doi.org/10.1007/s00198-019-05053-z.

Bala Y, Bui QM, Wang XF, et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res. 2015;30(4):621-9. http://doi.org/10.1002/jbmr.2388.

Zhang B, Yang Y, Yi J, Zhao Z, Ye R. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. J Periodontal Res. 2021;56(5):991-1005. http://doi.org/10.1111/jre.12912.

Lu Y, Liu S, Yang P, et al. Exendin-4 and eldecalcitol synergistically promote osteogenic differentiation of bone marrow mesenchymal stem cells through M2 macrophages polarization via PI3K/AKT pathway. Stem Cell Res Ther. 2022;13(1):113. Published 2022 Mar 21. http://doi.org/10.1186/s13287-022-02800-8.

Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242-53. http://doi.org/10.1016/j.imbio.2018.11.010.

Hu J, Zhang L, Liechty C, et al. Long noncoding RNA GAS5 regulates macrophage polarization and diabetic wound healing. J Invest Dermatol. 2020;140(8):1629-38. http://doi.org/10.1016/j.jid.2019.12.030.

Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17(5):695-708. http://doi.org/10.1016/j.cmet.2013.04.001.

Menegazzo L, Ciciliot S, Poncina N, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52(3):497-503. http://doi.org/10.1007/s00592-014-0676-x.

Thimmappa PY, Nair AS, Najar MA, et al. Quantitative phosphoproteomics reveals diverse stimuli activate distinct signaling pathways during neutrophil activation. Cell Tissue Res. 2022;389(2):241-57. http://doi.org/10.1007/s00441-022-03636-7.

Thimmappa PY, Vasishta S, Ganesh K, Nair AS, Joshi MB. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Hum Cell. 2023;36(4):1265-82. http://doi.org/10.1007/s13577-023-00905-7.

Rabelo MS, El-Awady A, Moura Foz A, et al. Influence of T2DM and prediabetes on blood DC subsets and function in subjects with periodontitis. Oral Dis. 2019;25(8):2020-29. http://doi.org/10.1111/odi.13200.

Qiu T, Li M, Tanner MA, et al. Depletion of dendritic cells in perivascular adipose tissue improves arterial relaxation responses in type 2 diabetic mice. Metabolism. 2018;85:76-89. http://doi.org/10.1016/j.metabol.2018.03.002.

Touch S, Clément K, André S. T Cell populations and functions are altered in human obesity and type 2 diabetes. Curr Diab Rep. 2017;17(9):81. http://doi.org/10.1007/s11892-017-0900-5.

Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692-8. http://doi.org/10.1056/NEJMoa012864.

Kavazović I, Krapić M, Beumer-Chuwonpad A, et al. Hyperglycemia and not hyperinsulinemia mediates diabetes-induced memory CD8 T-cell dysfunction. Diabetes. 2022;71(4):706-21. http://doi.org/10.2337/db21-0209.

DeFuria J, Belkina AC, Jagannathan-Bogdan M, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A. 2013;110(13):5133-8. http://doi.org/10.1073/pnas.1215840110.

Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T. High glucose concentration impairs ATP outflow and immunoglobulin production by human peripheral B lymphocytes: involvement of P2X7 receptor. Immunobiology. 2013;218(4):591-601. http://doi.org/10.1016/j.imbio.2012.07.010.

Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292-9. http://doi.org/10.1007/s00125-005-1786-3.

Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab. 2010;28(5):554-60. http://doi.org/10.1007/s00774-010-0160-9.

Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, Dam TT, Barrett-Connor E, Palermo L, Orwoll ES, Cummings SR, Black DM, Schwartz AV. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014 Oct;57(10):2057-65. http://doi.org/10.1007/s00125-014-3289-6. Epub 2014 Jun 9. PMID: 24908567; PMCID: PMC4344350.

Gilbert MP, Marre M, Holst JJ, et al. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes. Endocr Pract. 2016;22(4):406-11. http://doi.org/10.4158/EP15758.OR.

Zinman B, Haffner SM, Herman WH, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(1):134-42. http://doi.org/10.1210/jc.2009-0572.

Starup-Linde J, Gregersen S, Frost M, Vestergaard P. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes. Bone. 2017;95:136-42. http://doi.org/10.1016/j.bone.2016.11.026.

Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem. 2011 Oct;112(10):2902-9. http://doi.org/10.1002/jcb.23206. PMID: 21618594.

Salari-Moghaddam A, Sadeghi O, Keshteli AH, Larijani B, Esmaillzadeh A. Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2019;30(6):1167-73. http://doi.org/10.1007/s00198-019-04948-1.

Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23(8):1334-42. http://doi.org/10.1359/jbmr.080323.

Schwartz AV, Sellmeyer DE, Vittinghoff E, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91(9):3349-54. http://doi.org/10.1210/jc.2005-2226.

Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32-9. http://doi.org/10.1503/cmaj.080486.

Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115-23. http://doi.org/10.1016/j.bone.2014.08.010.

Solomon DH, Cadarette SM, Choudhry NK, Canning C, Levin R, Stürmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94(8):2792-8. http://doi.org/10.1210/jc.2008-2157.

Kawai M, Rosen CJ. PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol. 2010;6(11):629-36. http://doi.org/10.1038/nrendo.2010.155.

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. http://doi.org/10.1126/science.284.5411.143. PMID: 10102814.

Benvenuti S, Cellai I, Luciani P, Deledda C, Baglioni S, Giuliani C, Saccardi R, Mazzanti B, Dal Pozzo S, Mannucci E, Peri A, Serio M. Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol Invest. 2007 Oct;30(9):RC26-30. http://doi.org/10.1007/BF03350807. PMID: 17993761.

Ptaszynska A, Johnsson KM, Parikh SJ, de Bruin TW, Apanovitch AM, List JF. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf. 2014;37(10):815-29. http://doi.org/10.1007/s40264-014-0213-4.

Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, Meininger G. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015 Mar;17(3):294-303. http://doi.org/10.1111/dom.12428. Epub 2015 Jan 12. PMID: 25495720.

Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157-66. http://doi.org/10.1210/jc.2015-3167.

Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22(4):1042-9. http://doi.org/10.1002/oby.20663.

Zhou Z, Jardine M, Perkovic V, et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia. 2019;62(10):1854-67. http://doi.org/10.1007/s00125-019-4955-5.

Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962-71. http://doi.org/10.1038/ki.2013.356.

Li X, Li T, Cheng Y, et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta-analysis. Diabetes Metab Res Rev. 2019;35(7):e3170. http://doi.org/10.1002/dmrr.3170.

Cheng L, Li YY, Hu W, et al. Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment: A meta-analysis of randomized controlled trials. Diabetes Metab. 2019;45(5):436-45. http://doi.org/10.1016/j.diabet.2019.01.010.

Weivoda MM, Chew CK, Monroe DG, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020;11(1):87. Published 2020 Jan 7. http://doi.org/10.1038/s41467-019-14003-6.

Pereira M, Jeyabalan J, Jørgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-67. http://doi.org/10.1016/j.bone.2015.08.006.

Bunck MC, Eliasson B, Cornér A, Heine RJ, Shaginian RM, Taskinen MR, Yki-Järvinen H, Smith U, Diamant M. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab. 2011 Apr;13(4):374-7. http://doi.org/10.1111/j.1463-1326.2010.01355.x. PMID: 21205127.

Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014;6(3):260-6. http://doi.org/10.1111/1753-0407.12102.

Su B, Sheng H, Zhang M, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015;48(1):107-15. http://doi.org/10.1007/s12020-014-0361-4.

Mamza J, Marlin C, Wang C, Chokkalingam K, Idris I. DPP-4 inhibitor therapy and bone fractures in people with type 2 diabetes — A systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;116:288-98. http://doi.org/10.1016/j.diabres.2016.04.029.

Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials [published correction appears in Diabetes Care. 2014 Jan;37(1):312]. Diabetes Care. 2011;34(11):2474-6. http://doi.org/10.2337/dc11-1099.

Driessen JH, van den Bergh JP, van Onzenoort HA, Henry RM, Leufkens HG, de Vries F. Long-term use of dipeptidyl peptidase-4 inhibitors and risk of fracture: A retrospective population-based cohort study. Diabetes Obes Metab. 2017;19(3):421-8. http://doi.org/10.1111/dom.12843.

Driessen JH, van Onzenoort HA, Starup-Linde J, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif Tissue Int. 2015;97(5):506-15. http://doi.org/10.1007/s00223-015-0037-y.

Xi G, Rosen CJ, Clemmons DR. IGF-I and IGFBP-2 stimulate AMPK activation and autophagy, which are required for osteoblast differentiation. Endocrinology. 2016;157(1):268-81. http://doi.org/10.1210/en.2015-1690.

Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012;55(11):2929-37. http://doi.org/10.1007/s00125-012-2668-0.

Campos Pastor MM, López-Ibarra PJ, Escobar-Jiménez F, Serrano Pardo MD, García-Cervigón AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int. 2000;11(5):455-9. http://doi.org/10.1007/s001980070114.

Schwartz AV, Vittinghoff E, Sellmeyer DE, et al. Diabetes-related complications, glycemic control, and falls in older adults [published correction appears in Diabetes Care. 2008 May;31(5):1089]. Diabetes Care. 2008;31(3):391-6. http://doi.org/10.2337/dc07-1152.

Nicodemus KK, Folsom AR; Iowa Women’s Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192-7. http://doi.org/10.2337/diacare.24.7.1192.

Kachroo S, Kawabata H, Colilla S, et al. Association between hypoglycemia and fall-related events in type 2 diabetes mellitus: analysis of a U. S. commercial database. J Manag Care Spec Pharm. 2015;21(3):243-53. http://doi.org/10.18553/jmcp.2015.21.3.243.

Wallander M, Axelsson KF, Nilsson AG, Lundh D, Lorentzon M. Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the fractures and fall injuries in the elderly cohort (FRAILCO). J Bone Miner Res. 2017;32(3):449-60. http://doi.org/10.1002/jbmr.3002.

Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes? Calcif Tissue Int. 2011;88(3):209-14. http://doi.org/10.1007/s00223-010-9450-4.

Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL; fracture intervention trial. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care. 2004;27(7):1547-53. http://doi.org/10.2337/diacare.27.7.1547.

Ensrud KE, Stock JL, Barrett-Connor E, et al. Effects of raloxifene on fracture risk in postmenopausal women: the raloxifene use for the heart trial. J Bone Miner Res. 2008;23(1):112-20. http://doi.org/10.1359/jbmr.070904.

Schwartz AV, Pavo I, Alam J, Disch DP, Schuster D, Harris JM, Krege JH. Teriparatide in patients with osteoporosis and type 2 diabetes. Bone. 2016 Oct;91:152-8. http://doi.org/10.1016/j.bone.2016.06.017. Epub 2016 Jul 1. PMID: 27374026.

Dhaliwal R, Hans D, Hattersley G, et al. Abaloparatide in postmenopausal women with osteoporosis and type 2 diabetes: a post hoc analysis of the ACTIVE Study [published correction appears in JBMR Plus. 2020 Nov 03;5(2):e10414]. JBMR Plus. 2020;4(4):e10346. Published 2020 Feb 27. http://doi.org/10.1002/jbm4.10346.

Ferrari S, Eastell R, Napoli N, et al. Denosumab in postmenopausal women with osteoporosis and diabetes: Subgroup analysis of FREEDOM and FREEDOM extension. Bone. 2020;134:115268. http://doi.org/10.1016/j.bone.2020.115268.

##submission.downloads##

Опубліковано

2024-03-30

Як цитувати

1.
Кондратюк В, Стахова А. Діабет-індукований остеопороз. Огляд. КЕтаЕХ [інтернет]. 30, Березень 2024 [цит. за 16, Липень 2024];(1):65-76. доступний у: http://jcees.endocenter.kiev.ua/article/view/300645

Номер

Розділ

Огляди літератури