Діабетогенна дія статинів — механізми та наслідки. Огляд літератури
DOI:
https://doi.org/10.30978/CEES-2022-2-69Ключові слова:
статини; цукровий діабет 2 типу; інсулінорезистентність; адипоцити; скелетні м’язи; печінка; мікроРНКАнотація
Протягом останніх 20 років результати первинної та вторинної профілактики серцево-судинних захворювань (ССЗ) у пацієнтів із цукровим діабетом (ЦД) 2 типу, зазвичай за допомогою попередньо визначених підгрупових аналізів, постійно демонстрували незаперечні докази зниження відносного і абсолютного ризику ССЗ. Однак ентузіазм щодо застосування інгібіторів 3-гідроксил-3-метилглутарил-коферменту А (ГМГ-КоА)-редуктази значно зменшився в результаті спостереження за пацієнтами, у яких на тлі використання статинів приєднався ЦД.
Механізми, за допомогою яких статини можуть призвести до розвитку ЦД 2 типу, не повністю з’ясовані. В ці процеси можуть бути залучені як цільові, так і позацільові ефекти, зокрема вплив на мевалонатний шлях, що супроводжується пригніченням декількох шляхів клітинного біосинтезу, активація процесів глюконеогенезу за рахунок посилення експресії генів ключових ферментів, порушення сигнальних шляхів інсуліну, зміни в циркулюючих вільних жирних кислотах, гормонах, функціонально-структурному стані β-клітин, дозріванні/диференціюванні адипоцитів. Додаткові механізми, наприклад, епігенетична регуляція, опосередкована специфічними мікроРНК (класом коротких некодуючих молекул РНК, що беруть участь у регуляції трансляції та деградації РНК), також задіяна у процесах зменшення секреції інсуліну.
Тривають дослідження, спрямовані на з’ясування статин-індукованих механізмів розвитку ЦД 2 типу. Встановлено, що терапія інгібіторами ГМГ-КоА-редуктази, хоча і впливає на приєднання ЦД 2 типу, однак сприяє зниженню приєднання і/або прогресування ССЗ. Тому прийом статинів слід продовжувати пацієнтам з високим або дуже високим ризиком ССЗ з метою досягнення цільових рівнів холестерину ліпопротеїнів низької густини. Перш ніж розпочати лікування слід оцінити ступінь ризику. В осіб з високим ризиком розвитку ЦД 2 типу, які отримують статини, необхідно регулярно контролювати рівень HbA1c і глюкози в крові.
Посилання
Lazarte J, Hegele RA. Dyslipidemia management in adults with diabetes. Can J Diabetes. 2020;44(1):53-60. https://doi.org/10.1016/j.jcjd.2019.07.003.
Willeit P, Ridker PM, Nestel PJ, et al. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet. 2018;392(10155):1311-20. https://doi.org/10.1016/S0140-6736(18)31652-0.
Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/ PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3168-209. https://doi.org/10.1016/j.jacc.2018.11.002.
Visseren FLJ, Mach F, Smulders YM, et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-337. https://doi.org/10.1093/eurheartj/ehab484.
Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. https://doi.org/10.1093/eurheartj/ehz455.
Ridker PM, Fonseca FA, Genest J, et al. JUPITER Trial Study Group. Baseline characteristics of participants in the JUPITER trial, a randomized placebo-controlled primary prevention trial of statin therapy among individuals with low low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein. Am J Cardiol. 2007;100(11):1659-64. https://doi.org/10.1016/j.amj card.2007.09.072.
Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556-64. https://doi.org/10.1001/ jama.2011.860.
Livingstone SJ, Looker HC, Akbar T, et al. Effect of atorvastatin on glycaemia progression in patients with diabetes: an analysis from the Collaborative Atorvastatin in Diabetes Trial (CARDS). Diabetologia. 2016;59(2):299-306. https://doi.org/10.1007/s00125-015-3802-6.
Brault M, Ray J, Gomez YH, Mantzoros CS, Daskalopoulou SS. Statin treatment and new-onset diabetes: a review of proposed mechanisms. Metabolism. 2014;63(6):735-45.https://doi.org/10.1016/j.metabol.2014.02.014.
Serhiyenko VA, Serhiyenko LM, Ajmi S, Serhiyenko AA. Diabetic cardiac autonomic neuropathy: effects of statins and omega-3 polyunsaturated fatty acids on lipid profile and insulin resistance parameters. Clin Res Trials. 2019;5:1-6. https://doi.org/10.15761/CRT.1000274.
Serhiyenko VA, Ajmi S, Serhiyenko AA. Diabetic cardiovascular autonomic neuropathy: insulin resistance, lipids and simvastatin. J Integr Cardiol. 2020;3(5):1-5. https://doi.org/10.31487/j.JICOA.2020.05.06.
Nakata M, Nagasaka S, Kusaka I, Matsuoka H, Ishibashi S, Yada T. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control. Diabetologia. 2006;49(8):1881-92. https://doi.org/10.1007/s00125-006-0269-5.
Zhao W, Zhao SP. Different effects of statins on induction of diabetes mellitus: an experimental study. Drug Des Devel Ther. 2015;9:6211-23. https://doi.org/10.2147/DDDT.S87979.
Mancini GB, Baker S, Bergeron J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Consensus Working Group Update (2016). Can J Cardiol. 2016;32(7 Suppl):S35-65. https://doi.org/10.1016/j.cjca.2016.01.003.
Betteridge DJ, Carmena R. The diabetogenic action of statins — mechanisms and clinical implications. Nat Rev Endocrinol. 2016;12(2):99-110. https://doi.org/10.1038/nrendo.2015.194.
Galicia-Garcia U, Jebari S, Larrea-Sebal A, et al. Statin treatment-induced development of type 2 diabetes: from clinical evidence to mechanistic Insights. Int J Mol Sci. 2020;21(13):4725. https://doi.org/10.3390/ijms21134725.
Ashcroft FM, Rorsman P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol. 2013;9(11):660-69. https://doi.org/10.1038/nrendo.2013.166.
Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C. Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology. 2013;154(2):675-84. https://doi.org/10.1210/en.2012-1818.
Pankiv IV. The effect of vitamin D supplementation on insulin resistance and arterial stiffness in patients with hypothyroidism. International Journal of Endocrinology (Ukraine). 2018;14(7):36-40. DOI: 10.22141/2224-0721.14.7.2018.148774.
Sadighara M, Amirsheardost Z, Minaiyan M, et al. Toxicity of atorvastatin on pancreas mitochondria: A justification for increased risk of diabetes mellitus. Basic Clin Pharmacol Toxicol. 2017;120(2):131-7. https://doi.org/10.1111/bcpt.12656.
Curry L, Almukhtar H, Alahmed J, Roberts R, Smith PA. Simvastatin inhibits L-type Ca2+-channel activity through impairment of mitochondrial function. Toxicol Sci. 2019;169(2):543-52. https://doi.org/10.1093/toxsci/kfz068.
Zhou J, Li W, Xie Q, et al. Effects of simvastatin on glucose metabolism in mouse MIN6 cells. J Diabetes Res. 2014;2014:376570. https://doi.org/10.1155/2014/ 376570.
Ray K. Statin diabetogenicity: guidance for clinicians. Cardiovasc Diabetol. 2013;12(Suppl. 1):S3. https://doi.org/10.1186/1475-2840-12-S1-S3.
Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. Br J Clin Pharmacol. 2013;75(4):1118-24. https://doi.org/10.1111/j.1365-2125.2012.04403.x.
Urazgildeeva SA. Statins and diabetes: focus on pitavastatin. Cardiosomatics. 2020;11(2):40-9. https://doi.org/10.26442/22217185.2020.2.200226.
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55(10):2565-82. https://doi.org/10.1007/s00125-012-2644-8.
Ho CK, Sriram G, Dipple KM. Insulin sensitivity predictions in individuals with obesity and type II diabetes mellitus using mathematical model of the insulin signal transduction pathway. Mol Genet Metab. 2016;119(3):288-92. https://doi.org/10.1016/j.ymgme.2016.09.007.
Moraes-Vieira PM, Saghatelian A, Kahn BB. GLUT4 Expression in adipocytes regulates de novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects. Diabetes. 2016;65(7):1808-15. https://doi.org/10.2337/db16-0221.
Koeppen BM, Stanton BA. Berne & Levy Physiology. 7th ed. Amsterdam: Elsevier Health Sciences; 2017.
Li R, Chen LZ, Zhao SP, Huang XS. Inflammation activation contributes to adipokine imbalance in patients with acute coronary syndrome. PLoS One. 2016;11(3):e0151916. https://doi.org/10.1371/journal.pone.0151916.
Breen MR, Camps M, Carvalho-Simoes F, Zorzano A, Pilch PF. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS One. 2012;7(4):e34516. https://doi.org/10.1371/journal.pone.0034516.
Krautbauer S, Neumeier M, Eisinger K, et al. LDL but not HDL increases adiponectin release of primary human adipocytes. Exp Mol Pathol. 2013;95(3):325-59. https://doi.org/10.1016/j.yexmp.2013.10.002.
Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle — A focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol. 2015;417:52-62. https://doi.org/10.1016/j.mce. 2015.09.004.
Bradley H, Shaw CS, Worthington PL, Shepherd SO, Cocks M, Wagenmakers AJ. Quantitative immunofluorescence microscopy of subcellular GLUT4 distribution in human skeletal muscle: effects of endurance and sprint interval training. Physiol Rep. 2014;2(7):e12085. https://doi.org/10.14814/phy2.12085.
Sadler JB, Bryant NJ, Gould GW, Welburn CR. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int J Mol Sci. 2013;14(5):9963-78. https://doi.org/10.3390/ijms14059963.
Yaluri N, Modi S, Kokkola T. Simvastatin induces insulin resistance in L6 skeletal muscle myotubes by suppressing insulin signaling, GLUT4 expression and GSK-3β phosphorylation. Biochem Biophys Res Commun. 2016;480(2):194-200. https://doi.org/10.1016/j.bbrc.2016.10.026.
Sun B, Zhong Z, Wang F, et al. Atorvastatin impaired glucose metabolism in C2C12 cells partly via inhibiting cholesterol-dependent glucose transporter 4 translocation. Biochem Pharmacol. 2018;150:108-19. https://doi.org/10.1016/j.bcp.2018.01.021.
Sanvee GM, Panajatovic MV, Bouitbir J, Krähenbühl S. Mechanisms of insulin resistance by simvastatin in C2C12 myotubes and in mouse skeletal muscle. Biochem Pharmacol. 2019;164:23-33. https://doi.org/10.1016/j.bcp.2019.02.025.
Bonifaci A, Sanvee GM, Brecht K, et al. IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes. Arch Toxicol. 2017;91(5):2223-34. https://doi.org/10.1007/s00204-016-1871-z.
Li W, Liang X, Zeng Z, et al. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes. Biomed Pharmacother. 2016;83:194-200. https://doi.org/10.1016/j.biopha.2016.06.029.
Kain V, Kapadia B, Misra P, Saxena U. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism. Sci Rep. 2015;5:13823. https://doi.org/10.1038/srep13823.
Ling Z, Shu N, Xu P, et al. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem Pharmacol. 2016;100:98-111. https://doi.org/10.1016/j.bcp.2015.11.023.
Piepoli MF, Hoes AW, Agewall S, et al. ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315-81. https://doi.org/10.1093/eurheartj/ehw106.
Gotoh S, Negishi M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci Rep. 2015;5:14076. https://doi.org/10.1038/srep14076.
Hatting M, Tavares CDJ, Sharabi K, et al. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21-35. https://doi.org/10.1111/nyas.13435.
Williams MD, Mitchell GM. MicroRNAs in insulin resistance and obesity. Exp Diabetes Res. 2012;2012:484696. https://doi.org/10.1155/2012/ 484696.
Fernández-Hernando C, Ramírez CM, Goedeke L, Suárez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33(2):178-85.
Dávalos A, Goedeke L, Smibert P, et al. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232-7. https://doi.org/ 10.1073/pnas.1102281108.
Allen RM, Marquart TJ, Albert CJ, et al. MiR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 2012;4(9):882-95. https://doi.org/10.1002/emmm.201201228.
Wijesekara N, Zhang LH, Kang MH, et al. MiR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61(3):653-8. https://doi.org/10.2337/db11-0944.
Takwi AA, Li Y, Becker Buscaglia LE, et al. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol Med. 2012;4(9):896-909. https://doi.org/10.1002/emmm.201101045.
Zhang H, Lamon BD, Moran G, Sun T, Gotto AM Jr, Hajjar DP. Pitavastatin differentially modulates microRNA-associated cholesterol transport proteins in macrophages. PLoS One. 2016;11(7):e0159130. https://doi.org/10.1371/journal. pone.0159130.
Vickers KC, Shoucri BM, Levin MG, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533-42. https://doi.org/10.1002/hep. 25846.
Zhang M, Wu JF, Chen WJ, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54-64. https://doi.org/10.1016/ j.atherosclerosis.2014.02.008.
Alvarez ML, Khosroheidari M, Eddy E, Done SC. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis. 2015;242(2):595-604. https://doi.org/10.1016/j.atherosclerosis.2015.08.023.
Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem. 2012;287(2):1335-44. https://doi.org/10.1074/jbc.M111.295287.
Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim Biophys Acta. 2016;1859(9):1072-82. https://doi.org/10.1016/j.bbagrm.2016.03.012.
Oh KJ, Park J, Kim SS, Oh H, Choi CS, Koo SH. TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLoS Genet. 2012;8(9):e1002986. https://doi.org/10.1371/journal. pgen.1002986.
Neve B, Le Bacquer O, Caron S, et al. Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia. 2014;57(4):785-96. https://doi.org/10.1007/s00125-013-3154-z.
Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr Rev. 2016;37(3):254-77. https://doi.org/10.1210/er.2015-1146.
Alipoor B, Ghaedi H, Meshkani R, et al. Association of miR-146a expression and type 2 diabetes mellitus: a meta-analysis. Int J Mol Cell Med. 2017;6(3):156-63. https://doi.org/10.22088/acadpub. BUMS.6.3.156.
Yang YM, Seo SY, Kim TH, Kim SG. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology. 2012;56(6):2209-20. https://doi.org/10. 1002/hep. 25912.
Wang Y, Hu C, Cheng J, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun. 2014;446(4):1255-60. https://doi.org/ 10.1016/j.bbrc.2014.03.107.
Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun. 2014;445(2):517-23. https://doi.org/10.1016/j.bbrc.2014. 02.034.
Docrat TF, Nagiah S, Krishnan A, Naidoo DB, Chuturgoon AA. Atorvastatin induces MicroRNA-145 expression in HEPG2 cells via regulation of the PI3K/AKT signalling pathway. Chem Biol Interact. 2018;287:32-40. https://doi.org/10.1016/j.cbi.2018.04.005.
Tang CY, Man XF, Guo Y, et al. IRS-2 partially compensates for the insulin signal defects in IRS-1-/-mice mediated by miR-33. Mol Cells. 2017;40(2):123-32. https://doi.org/10.14348/molcells.2017.2228.
Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735-42. https://doi.org/10.1016/S0140-6736(09)61965-6.
Authors/Task Force Members, Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34(39):3035-87. https://doi.org/10.1093/ eurheartj/eht108.
Maki KC, Diwadkar-Navsariwala V, Kramer MW. Statin use and risk for type 2 diabetes: what clinicians should know. Postgrad Med. 2018;130(2):166-72. https://doi.org/10.1080/00325481.2018.1402658.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Автори
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.