Зміни кишкового мікробіому як важливий фактор ризику розвитку метаболічних захворювань

Автор(и)

  • С. М. Ткач Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine
  • О. С. Ларін Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine https://orcid.org/0000-0002-5090-5110
  • А. В. Підаєв Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ, Ukraine

DOI:

https://doi.org/10.24026/1818-1384.1(57).2017.96971

Ключові слова:

кишкова мікробіота, кишковий дисбіоз, ожиріння, цукровий діабет

Анотація

В огляді висвітлено сучасні уявлення про роль кишкової мікробіоти та її геному в розвитку таких метаболічних захворювань як ожиріння та цукровий діабет. Показано, що кишкова мікробіота впливає на зміни енергетичного балансу (підвищення отримання енергії з нутрієнтів) та імунітету (сприяння розвитку запалення та аутоімунних процесів), що призводять до метаболічної дисфункції, зокрема, до ожиріння, резистентності до інсуліну або його дефіциту. Розглянуто конкретні зміни складу кишкової мікробіоти та її функцій у пацієнтів з ЦД 1 та 2 типу, а також з ожирінням. Зроблено висновок, що кишкова мікробіота відіграє важливу роль в посиленні захисного кишкового бар'єру та регуляції запалення, а вплив на її характерні зміни, що є патофізіологічними особливостями ЦД 1 та 2 типу, сьогодні розглядається як важлива загальна ціль для майбутніх превентивних підходів при цьому захворюванні.

Біографії авторів

С. М. Ткач, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

доктор мед. наук, професор

О. С. Ларін, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Заслужений лікар України, д-р мед. наук, професор

А. В. Підаєв, Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, Київ

Д-р мед.наук, проф., заслужений лікар України

Посилання

Amar J, Serino M, Lange C. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011;54:3055–61. https://doi.org/10.1007/s00125-011-2329-8

Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979–84. https://doi.org/10.1073/pnas.0605374104

Bergstrum A, Skov TH, Bahl MI. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80:2889–900. https://doi.org/10.1128/aem.00342-14

Bosi E, Molteni L, Radaelli MG. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49:2824–7. https://doi.org/10.1007/s00125-006-0465-3

Brown CT, Davis-Richardson AG, Giongo A. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792. https://doi.org/10.1371/journal.pone.0025792

Brugman S, Klatter FA, Visser JT. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 2006;49:2105–8. https://doi.org/10.1007/s00125-006-0334-0

Calcinaro F, Dionisi S, Marinaro M. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48:1565–75. https://doi.org/10.1007/s00125-005-1831-2

Cani PD, Possemiers S, Van de Wiele T. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091–103. https://doi.org/10.1136/gut.2008.165886

Cardwell CR, Stene LC, Joner G. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51:726–35. https://doi.org/10.1007/s00125-008-0941-z

Caricilli AM, Picardi PK, de Abreu LL. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol. 2011;9:e1001212. https://doi.org/10.1371/journal.pbio.1001212

Cotillard A, Kennedy SP, Kong LC. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8. https://doi.org/10.1038/nature12480

Gauffin Cano P, Santacruz A, Moya Б, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One. 2012;7:e41079. https://doi.org/10.1371/journal.pone.0041079

Giongo A, Gano KA, Crabb DB. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011;5:82–91. https://doi.org/10.1038/ismej.2010.92

Honeyman MC, Coulson BS, Stone NL. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes. 2000;49:1319–24. https://doi.org/10.2337/diabetes.49.8.1319

Jumpertz R, Le DS, Turnbaugh PJ. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.

https://doi.org/10.3945/ajcn.110.010132

Kalliomаki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.

Karlsson CL, Molin G, Cilio CM, Ahrnй S. The pioneer gut microbiota in human neonates vaginally born at term – a pilot study. Pediatr Res 2011;70:282–6. https://doi.org/10.1203/pdr.0b013e318225f765

Karlsson FH, Tremaroli V, Nookaew I. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. https://doi.org/10.1038/nature12198

Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012;7:e47713. https://doi.org/10.1371/journal.pone.0047713

King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS One.2011;6:e17049. https://doi.org/10.1371/journal.pone.0017049

Kootte RS, Vrieze A, Holleman F. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14:112–20. https://doi.org/10.1111/j.1463-1326.2011.01483.x

Krause I, Anaya JM, Fraser A. Anti-infectious antibodies and autoimmune-associated autoantibodies in patients with type I diabetes mellitus and their close family members. Ann NY Acad Sci. 2009;1173:633–9. https://doi.org/10.1111/j.1749-6632.2009.04619.x

Laitinen OH, Honkanen H, Pakkanen O. Coxsackie virus B1 is associated with induction of T-cell autoimmunity that portends type 1 diabetes. Diabetes. 2014;63:446–55. https://doi.org/10.2337/db13-0619

Larsen N, Vogensen FK, van den Berg FW. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085

Le Chatelier E, Nielsen T, Qin J. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6. https://doi.org/10.1038/nature12506

Lunnrot M, Korpela K, Knip M. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes. 2000;49:1314–8. https://doi.org/10.2337/diabetes.49.8.1314

Marietta EV, Gomez AM, Yeoman C. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. 2013;8:e78687. https://doi.org/10.1371/journal.pone.0078687

Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12:5–9. https://doi.org/10.1038/ni0111-5

Murri M, Leiva I, Gomez-Zumaquero JM. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013;11:46. https://doi.org/10.1186/1741-7015-11-46

Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010;33:2277–84. https://doi.org/10.2337/dc10-0556

Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun. 2014;53:85–94. https://doi.org/10.1016/j.jaut.2014.03.005

Pereira PF, Alfenas Rde C, Arajo RM. Does breastfeeding influence the risk of developing diabetes mellitus in children? A review of current evidence. J Pediatr. (Rio J) 2014;90:7–15. https://doi.org/10.1016/j.jpedp.2013.02.010

Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. 2011;34:392–7. https://doi.org/10.2337/dc10-1676

Qin J, Li Y, Cai Z. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60. https://doi.org/10.1038/nature11450

Rewers M, Liu E, Simmons J, Redondo MJ, Hoffenberg EJ. Celiac disease associated with type 1 diabetes mellitus. Endocrinol Metab Clin North Am 2004;33:197–214. https://doi.org/10.1016/j.ecl.2003.12.007

Ridaura VK, Faith JJ, Rey FE. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. https://doi.org/10.1126/science.1241214

Roep BO, Tree TI. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol. 2014;10:229–42. https://doi.org/10.1038/nrendo.2014.2

Santacruz A, Collado MC, Garcia-Valdes L. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92. https://doi.org/10.1017/s0007114510000176

Salonen A, Lahti L, Salojarvi J. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218-2230. https://doi.org/10.1038/ismej.2014.63

Sanz Y, Moya-Perez A. Microbiota, inflammation and obesity. In: Lyte Mark, Cryan John F, eds. Microbial Endocrinology: The Microbiota–Gut–Brain Axis in Health and Disease. New York: Springer, 2014:291–317. https://doi.org/10.1007/978-1-4939-0897-4_14

Sanz Y, Rastmanesh R, Agostoni C. Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharmacol Res. 2013;69:144–55. https://doi.org/10.1016/j.phrs.2012.10.021

Sanz Y, Olivares М, Moya-Perez А, Agostoni С. Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research. 2015;77(1-2):236-244. https://doi.org/10.1038/pr.2014.170

Sapone A, de Magistris L, Pietzak M. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55:1443–9. https://doi.org/10.2337/db05-1593

Secondulfo M, Iafusco D, Carratu R. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis. 2004;36:35–45. https://doi.org/10.1016/j.dld.2003.09.016

Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int. 2014;56:336–43. https://doi.org/10.1111/ped.12243

Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62. https://doi.org/10.2337/db08-0331

Verdam FJ, Fuentes S, de Jonge C. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity 2013;21:E607–15. https://doi.org/10.1002/oby.20466

Vijay-Kumar M, Aitken JD, Carvalho F. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–31. https://doi.org/10.1126/science.1179721

Wen L, Ley RE, Volchkov PY. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008;455:1109–13. https://doi.org/10.1038/nature07336

Wu X, Ma C, Han L. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol. 2010;61:69–78. https://doi.org/10.1007/s00284-010-9582-9

Zhang X, Shen D, Fang Z. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8:e71108. https://doi.org/10.1371/journal.pone.0071108

##submission.downloads##

Опубліковано

2017-03-13

Номер

Розділ

Огляди